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Abstract. Let R be a simple artinian ring with characteristic different
from 2 and 3. The purpose of this paper is to describe additive maps f, g

satisfying the identity f(x)x−1 + xg(x−1) = 0 for every invertible x ∈ R.

1. Introduction

The theory of functional identities extended results in polynomial identities,
generalized polynomial identities, and even generalized polynomial identities
with derivations and (anti)homomorphisms [2]. However, to the best of our
knowledge, there were almost no results that extended rational identities. In
1987, Vukman studied the identity f(x) = −x2f(x−1) on division rings [5],
but this was before even the first results of functional identities. Our goal is
to present a basic result that shows how rational identities can be extended to
functional identities.

We will consider an identity of the form f(x)x−1 + xg(x−1) = 0. This basic
identity was motivated by the functional identity

F (x)x = xG(x) (1)

which was studied by Brešar [1]. It follows from Brešar’s result [1, Corollary
4.9] that the additive maps F and G that satisfy identity (1) on a division ring
D must be of the form

F (x) = xa+ ζ(x) and G(x) = ax+ ζ(x) (2)

for all x ∈ D, where a ∈ D and ζ is an additive map to the center of the
division ring. Such solutions are traditionally called the standard solutions [2].
It seems that in our situation, the standard solutions will be more complicated.
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Theorem 1. Let D be a division ring with characteristic different from 2, and
let f, g : D → D be additive maps satisfying the identity

f(x)x−1 + xg(x−1) = 0 (3)

for every x ∈ D×, where D× is the set of invertible elements of D. Then

f(x) = xq + d(x) and g(x) = −qx+ d(x),

where d : D → D is a derivation and q ∈ D is a fixed element.

Remark 2. One can see that the main difference between the solutions (2) of
the functional identity (1) and the solutions of our identity (3) is that ζ from
(2) is a central map, and in our case, d is an arbitrary derivation. This makes
us believe that in the case of more general identities involving inverses, the
solutions will be standard modulo the vector space of derivations; that is, the
solutions will be standard ignoring terms involving derivations.

Theorem 1 will be proved in section 2. We now present an immediate con-
sequence of the theorem.

Corollary 3. Let D be a division ring with characteristic different from 2. If
f : D → D is any additive map such that it satisfies the identity

f(x)x−1 + xf(x−1) = 0 (4)

for all x ∈ D×, then f is a derivation.

Note that the map f(x) = x, which is not a derivation, satisfies identity (4)
in the case when D is of characteristic 2, so the condition that D does not
have characteristic 2 in Corollary 3 cannot be removed.

In this paper, we will also consider a generalization of Theorem 1.

Theorem 4. Let D be a division ring with characteristic different from 2 and
3, and let R =Mn(D) be a ring of n×n matrices with n ≥ 2. Let f, g : R→ R

be additive maps satisfying the identity

f(x)x−1 + xg(x−1) = 0 (5)

for every x ∈ R×, where R× is the set of invertible elements of R. Then

f(x) = xq + d(x) and g(x) = −qx+ d(x),

where d : R→ R is a derivation and q ∈ R is a fixed element.
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The question regarding whether or not the exclusion of characteristic 3 is
necessary in Theorem 4 remains open.

This theorem yields a corollary analogous to Corollary 3.

Corollary 5. Let D be a division ring with characteristic different from 2 and
3, and let R = Mn(D) be a ring of n × n matrices with n ≥ 2. If f : R → R

is any additive map such that it satisfies the identity f(x)x−1 + xf(x−1) = 0

for all x ∈ R×, then f is a derivation.

It is interesting to note that a similar result for invertible matrices over com-
mutative rings was obtained in the paper by Ge, Li, and Wang [3]. However,
their technique was based on the use of orthogonal idempotents, which is not
applicable in our case.

Corollary 6. Let R be a simple artinian ring with characteristic different
from 2 and 3. If f, g : R → R are any additive maps satisfying the identity
f(x)x−1 + xg(x−1) = 0 for all x ∈ R×, then

f(x) = xq + d(x) and g(x) = −qx+ d(x),

where d : R→ R is a derivation and q ∈ R is a fixed element.

2. Proof of Theorem 1

We will apply Hua’s Identity, which states that for any nonzero elements
a, b of a division ring with ab 6= 1, we have

a− aba =
(
a−1 + (b−1 − a)−1

)−1
. (6)

Additionally, we will make use of the following equivalent forms of (3):

f(x) = −xg(x−1)x (7)

and
g(x−1) = −x−1f(x)x−1. (8)

Let us define c = a − aba for some a, b ∈ D×. Now, using (7) with x = c,
x−1 = a−1 + (b−1 − a)−1, and the additivity of g, we see that

f(c) = −cg
(
a−1 + (b−1 − a)−1

)
c

= −cg(a−1)c− cg
(
(b−1 − a)−1

)
c.

Removing g from the equation by applying (8), we have

f(c) = ca−1f(a)a−1c+ c(b−1 − a)−1f(b−1 − a)(b−1 − a)−1c.
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Rearranging (6), we can substitute both (b−1−a)−1 = c−1−a−1 and c = a−aba
to achieve

f(a− aba) = f(a)− f(a)ba− abf(a) + abf(a)ba+ abf(b−1 − a)ba.

Now, using the additivity of f and simplifying appropriately, we have

f(aba) = f(a)ba+ abf(a)− abf(b−1)ba.

One final replacement using (8) yields

f(aba) = f(a)ba+ abf(a) + ag(b)a. (9)

Substituting (7) and (8) into (9), replacing a with a−1 and b with b−1, and
simplifying appropriately, we similarly conclude

g(aba) = g(a)ba+ abg(a) + af(b)a.

Alternately letting a = 1, b = x and a = x, b = 1, and using the fact that
f(1) = −g(1), gives the identities

f(x) = xf(1) + f(1)x+ g(x), (10)

g(x) = xg(1) + g(1)x+ f(x), (11)
f(x2) = xf(x) + f(x)x− xf(1)x, (12)

and
g(x2) = xg(x) + g(x)x− xg(1)x. (13)

Our next step is to define h = f + g. The additivity of f and g immediately
yields the additivity of h. Additionally, summing (12) and (13) we get

h(x2) = xh(x) + h(x)x;

that is, h is a Jordan derivation of D. A well-known result by Herstein [4,
Theorem 3.1] gives us that h is an ordinary derivation of D.

Now, adding f(x) to both sides of (10), we can see that

2f(x) = 2xf(1) + [f(1), x] + h(x).

Finally, defining the derivation d : D → D by 2d(x) = [f(1), x] + h(x), we
achieve

f(x) = xq + d(x),

where q = f(1). Using a similar argument with (11) yields

g(x) = −qx+ d(x),

and so we have the desired result.
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3. Proof of Theorem 4

We begin with a lemma.

Lemma 7. Let R be a unital ring and assume R contains the elements 2, 3 and
their inverses. Let S = {x ∈ R | x and x+ c are invertible for c = 1, 2, or 3}.
Then, for additive maps f, g : R→ R satisfying property

f(x)x−1 + xg(x−1) = 0

for every x ∈ R×, the map h := f + g satisfies

h(x2) = xh(x) + h(x)x (14)

for every x ∈ S.

Proof. Given x and x + c as in the statement of the lemma, we note that
x−1 − (x+ c)−1 = cx−1(x+ c)−1, which implies that(

x−1 − (x+ c)−1
)−1

= c−1x2 + x. (15)

Since f is additive, we know f(a− b) = f(a)− f(b) for any a, b ∈ R. Now,
assuming that a and b are both invertible elements of R and using (7), which
is the equivalent form of the property assumed in the lemma, we can see that

(a− b)g
(
(a− b)−1

)
(a− b) = ag(a−1)a− bg(b−1)b.

Then, multiplying through on both sides by (a− b)−1 yields

g
(
(a− b)−1

)
= (a− b)−1ag(a−1)a(a− b)−1 − (a− b)−1bg(b−1)b(a− b)−1.

Substituting a = x−1, b = (x+ c)−1, and using (15) gives us

g
(
c−1x2 + x

)
= (c−1x+ 1)g(x)(c−1x+ 1)− c−1xg(x+ c)c−1x.

Using the additivity of g, we then have

c−1g(x2) + g(x) = c−2xg(x)x+ c−1xg(x) + c−1g(x)x+ g(x)

− c−2xg(x)x− c−1xg(1)x,

and simplifying gives us identity (13). Replacing x with x−1 and using (8)
gives us identity (12).

Defining h = f + g and summing (12) and (13), we can see that

h(x2) = xh(x) + h(x)x+ xh(1)x.
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However, letting x = 1 yields that h(1) = 3h(1) which implies that 2h(1) = 0.
Since R contains 2−1, we must have h(1) = 0. Therefore,

h(x2) = xh(x) + h(x)x,

as desired. �

Now, we proceed with the proof of Theorem 4. We let D be a division ring
and R =Mn(D), and let f, g : R→ R be as in Theorem 4. We define aij ∈ R
to be such that the i, j entry is an invertible element a of D and all other
entries are zero.

At this point, we observe that at least three of I + aij, 2I + aij, 3I + aij,
4I + aij are invertible. Indeed, if c0I + aij is not invertible for c0 ∈ {1, 2, 3, 4},
then we must have det(c0I + aij) = 0, where by ‘det’ we mean the Dieudonné
determinant. Since there is at most one nonzero entry that does not occur
along the main diagonal, we know det(c0I + aij) is exactly the product of the
elements along the main diagonal of c0I + aij. Therefore, det(c0I + aij) = 0

implies one of the diagonal entries of c0I + aij is zero; that is, i = j and
c0 + a = 0. Now if c ∈ {1, 2, 3, 4} is different from c0, then we have c+ a 6= 0,
and thus, we have det(cI + aij) 6= 0; that is, cI + aij is invertible for every
c ∈ {1, 2, 3, 4} \ {c0}, as desired.

Choose cI + aij with c ∈ {1, 2, 3} such that cI + aij is invertible. Note that
from our observation, we know (c+ c′)I+aij is also invertible for c′ ∈ {1, 2, 3}.
Using Lemma 7, we get

h
(
(cI + aij)

2
)
= (cI + aij)h(cI + aij) + h(cI + aij)(cI + aij).

Then, the additivity of h implies that

h
(
(cI + aij)

2
)
= 2c2h(I) + 2ch(aij) + aijch(I) + ch(I)aij

+ aijh(aij) + h(aij)aij

= 2ch(aij) + aijh(aij) + h(aij)aij.

However, the left hand side of the previous equality can also be viewed like so:

h
(
(cI + aij)

2
)
= h(c2I) + 2h(caij) + h(a2ij)

= 2ch(aij) + h(a2ij).

Equating the two, we have

h(a2ij) = aijh(aij) + h(aij)aij. (16)
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We now observe that at least two of I+aij + bkl, 2I+aij + bkl, 3I+aij + bkl,
4I+aij + bkl are invertible. Indeed, assume that c0I+aij + bkl is not invertible
for c0 ∈ {1, 2, 3, 4}. Let a ∈ D× be the i, j entry of aij and let b ∈ D× be the
k, l entry of bkl. There are a few cases that can occur (throughout these cases,
we assume c ∈ {1, 2, 3, 4} \ {c0}).

• Case 1: i = j = k = l. In this case, we can see that c0I + aij + bkl =

c0I + aii + bii, so that det(c0I + aii + bii) = cn−10 (c0 + a+ b) = 0, which
implies that c0 = −(a + b). However, det(cI + aii + bii) 6= 0, and so
cI + aii + bii is invertible for three values of c.
• Case 2: i = j, k 6= l. Here, since the k, l entry is the only nonzero
entry outside of the main diagonal, we know det(c0I + aii + bkl) =

cn−10 (c0 + a) = 0 and hence, we must have c0 = −a. Again, we have
det(cI+aii+ bkk) 6= 0, and so cI+aii+ bkk is invertible for three values
of c.
• Case 3: i = j, k = l, i 6= k. In this case, det(c0I + aii + bkk) equals
cn−20 (c0+a)(c0+ b) or cn−20 (c0+ b)(c0+a). Either way, this implies that
c0 = −a or c0 = −b. Without loss of generality assume c0 = −a. Then
we have cI + aii + bkk is invertible for c 6= −b; that is, cI + aii + bkk is
invertible for at least two values of c.
• Case 4: i 6= j, k 6= l. Given det(c0I + aij + bkl) = 0, we must have that
i = l, j = k, in which case, det(c0I+aij+bji) equals cn−20 (c20+(−1)i+jab)

or cn−20 (c20 + (−1)i+jba). This implies that c20 equals −(−1)i+jab or
−(−1)i+jba. If the characteristic of D is 5 or 7, we have that 12 = 42

or 32 = 42, respectively, which implies that cI + aij + bji is invertible
for at least two values of c. For any other characteristic, we have that
cI + aij + bji is invertible for three values of c.

In any case, we can see that at least two of I+aij+bkl, 2I+aij+bkl, 3I+aij+bkl,
4I + aij + bkl are invertible.

Let cI + aij + bkl be invertible for c ∈ {1, 2, 3}. From our observation, we
know (c+ c′)I + aij + bkl is also invertible for c′ ∈ {1, 2, 3}. Applying Lemma
7, we can see that

h
(
(cI + aij + bkl)

2
)
= (cI + aij + bkl)h(cI + aij + bkl)

+ h(cI + aij + bkl)(cI + aij + bkl).
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Using the additivity of h and the fact that h(I) = 0, we have

h
(
(cI + aij + bkl)

2
)
= 2ch(aij) + 2ch(bkl) + aijh(aij) + h(aij)aij + bklh(bkl)

+ h(bkl)bkl + aijh(bkl) + h(bkl)aij + bklh(aij) + h(aij)bkl

= 2ch(aij) + 2ch(bkl) + h(a2ij) + h(b2kl)

+ aijh(bkl) + h(bkl)aij + bklh(aij) + h(aij)bkl,

where the second equality uses (16). On the other hand, we can see that

h
(
(cI + aij + bkl)

2
)
= h(c2I + 2caij + 2cbkl + a2ij + b2kl + aijbkl + bklaij)

= 2ch(aij) + 2ch(bkl) + h(a2ij) + h(b2kl)

+ h(aijbkl) + h(bklaij).

Equating the two expressions for h
(
(cI + aij + bkl)

2
)
and simplifying yields

h(aijbkl + bklaij) = aijh(bkl) + h(bkl)aij + bklh(aij) + h(aij)bkl; (17)

that is, h is a Jordan derivation. Using the result by Herstein [4, Theorem
3.1], we can see that h is a derivation, and the rest of the proof follows just as
the proof of Theorem 1.
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