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a b s t r a c t

We show that for any claw-free graph G and any graph H , γ (G□H) ≥
2
3γ (G)γ (H), where

γ (G) is the domination number of G.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For basic graph theoretic notation and definitions see Diestel [6]. All graphs G(V , E) are finite, simple, connected,
undirected graphs with vertex set V and edge set E. We may refer to the vertex set and edge set of G as V (G) and E(G),
respectively.

For any graph G = (V , E), a subset S ⊆ V dominates G if N[S] = V (G). The minimum cardinality of S ⊆ V dominating G
is called the domination number of G and is denoted γ (G). We call a dominating set that realizes the domination number a
γ -set.

Definition 1.1. The Cartesian product of two graphs G1(V1, E1) and G2(V2, E2), denoted by G1□G2, is a graph with vertex set
V1 × V2 and edge set E(G1□G2) = {((u1, v1), (u2, v2)) : v1 = v2 and (u1, u2) ∈ E1, or u1 = u2 and (v1, v2) ∈ E2}.

In 1963, Vadim G. Vizing posed his now famous conjecture [9]: For any pair of graphs G and H ,

γ (G□H) ≥ γ (G)γ (H). (1.1)

The statement is known for graphs with domination number two [4] and three [8]. Recently, Boštjan Brešar produced a
clear and concise new proof of the result for graphs with domination number three [3].

The best current bound for the conjectured inequality was shown in 2010 by Suen and Tarr [7],

γ (G□H) ≥
1
2
γ (G)γ (H) +

1
2
min{γ (G), γ (H)}.

In the survey [4], the authors proved a slightly better bound for claw-free graphs, showing that for any claw-free graph
G and any graph H , γ (G□H) ≥

1
2γ (G)(γ (H) + 1).

In this note we apply the Contractor–Krop overcount technique [5] to the method of Brešar [3] to show that for any
claw-free graph G and any graph H , γ (G□H) ≥

2
3γ (G)γ (H).
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Fig. 1. The Chamber of Q1,2,3 .

1.1. Notation

A graph G is claw-free if G contains no induced K1,3 subgraph.
Let Γ = {v1, . . . , vk} be a minimum dominating set of G and for any i ∈ [k], define the set of private neighbors for

vi, Pi =
{
v ∈ V (G) − Γ : N(v) ∩ Γ = {vi}

}
. For S ⊆ [k], |S| ≥ 2, we define the shared neighbors of {vi : i ∈ S} as

PS =
{
v ∈ V (G) − Γ : N(v) ∩ Γ = {vi : i ∈ S}

}
.

For any S ⊆ [k], say S = {i1, . . . , is} where s ≥ 2, we will usually write PS as Pi1,...,is .
For i ∈ [k], let Qi = {vi} ∪ Pi. We call Q = {Q1, . . . ,Qk} the cells of G. For any I ⊆ [k], we write QI =

⋃
i∈IQi and call

C (QI ) = QI ∪
⋃

S⊆IPS the chamber of QI . We may write this as CI .
In Fig. 1, the black vertices are in the minimum dominating set. The chamber of Q1,2,3 is composed of the black and gray

vertices.
For a vertex h ∈ V (H), the G-fiber of h, Gh, is the subgraph of G□H induced by {(g, h) : g ∈ V (G)}.
For a minimum dominating set D of G□H , we define Dh

= D ∩ Gh. Likewise, for any set S ⊆ [k], Ph
S = PS × {h}, and for

i ∈ [k], Q h
i = Qi × {h}. By vh

i we mean the vertex (vi, h). For any Ih ⊆ [k], where Ih represents the indices of some cells in
G-fiber Gh, we write CIh to mean the chamber of Q h

Ih
, that is, the set

⋃
i∈IhQi ∪

⋃
S⊆IhP

h
S .

For ease of reference, assume that our representation of G□H is with G on the x-axis and H on the y-axis.
Any vertex (v, h) = vh

∈ Gh is vertically dominated by D if ({v} × NH [h]) ∩ D ̸= ∅. Vertices that are not vertically
dominated are called vertically undominated. For i ∈ [k] and h ∈ V (H), we say that the cell Q h

i is vertically dominated if
(Qi × NH [h]) ∩ D ̸= ∅. A cell which is not vertically dominated is vertically undominated. Note that all vertices of a vertically
undominated cell Q h

i are dominated by vertices (u, h) = uh
∈ Dh.

An independent dominating set of a graph G is a set of independent (pairwise mutually non-adjacent) vertices which
dominate G. The size of a smallest independent dominating set of G is denoted by i(G).

2. Claw-free graphs

We begin with the fundamental result on the domination of claw-free graphs.

Theorem 2.1 (Allan and Laskar [1]). If G is claw-free, then i(G) = γ (G).

The following fact follows from the definition of claw-free graphs.

Observation 2.2. For any claw-free graph G with minimum independent dominating set {v1, . . . , vk}, for any S ⊆ [k] with
|S| ≥ 3, PS = ∅.

Our argument, like that of Bartsalkin and German [2], relies on labeling the vertices of a minimum dominating set, D,
of G□H with labels that contain integers from {1, . . . , γ (G)}. Labels may be sets of integers of size one or pairs of distinct
integers. We show that every set of labels containing a fixed integer is at least of size γ (H). We then control the overcount
of vertices by applying the method of Contractor and Krop [5]. This is done by first applying a series of three labelings of the
vertices of D. Labels may contain one or two integers and in each successive labeling, we reduce the number of labels with
two integers while at the same time maintaining the property that vertices with labels that contain a fixed integer, when
projected onto H , form a dominating set of H .

In particular, Labeling 1 gives a singleton label to vertices of Dwhich can be projected onto a fixed dominating set or the
private neighbors of the dominating set of G. Other vertices of D are given a paired label. Labeling 2 reduces the number of
paired labels that interact with each other in different G-fibers while Labeling 3 reduces the number of paired labels that
interact with each other in the same G-fiber.

The resulting relabeled set D satisfies the property that every G-fiber with a certain number of vertices labeled by two
integers must contain at least as many vertices labeled by one integer. This allows us to show the claimed lower bound on
|D|.

Theorem 2.3. For any claw-free graph G and any graph H,

γ (G□H) ≥
2
3
γ (G)γ (H).
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Fig. 2. Labeling 2.

Proof. LetG be a claw-free graph andH any graph.We apply Theorem 2.1 and consider aminimum independent dominating
set of G, Γ = {v1, . . . , vk}. Let D be a minimum dominating set of G□H .

Our proof is composed of a series of increasingly refining labelings of the vertices of D. In all instances, for any i, j ∈ [k]
and h ∈ V (H), if v ∈ Ph

i,j, then v may be labeled by singleton labels i, j, or paired labels (i, j).
Our goal is to reduce the number of paired labels as much as possible.
For any h ∈ V (H), suppose the fiber Gh contains ℓh(= ℓ) vertically undominated cells U =

{
Q h
i1
, . . . ,Q h

iℓ

}
for some

0 ≤ ℓ ≤ k. We set Ih = {i1, . . . , iℓ}.
We apply the procedure Labeling 1 to the vertices of D. If a vertex of Dh for any h ∈ H , is in Q h

j1
for 1 ≤ j1 ≤ k, then we

label that vertex by j1. If v ∈ Dh is a shared neighbor of some subset of {vj1 : j1 ∈ Ih}, then by Observation 2.2, it is a member
of Ph

j1,j2
for some j1, j2 ∈ Ih, and we label v by the pair of labels (j1, j2). If v is a member of D∩ Ph

j1,j2
for i ∈ Ih and j2 ∈ [k] − Ih,

then we label v by j1. If v is a member of D ∩ Ph
j1,j2

for j1, j2 ∈ [k] − Ih, then we label v by either j1 or j2 arbitrarily. This
completes Labeling 1.

After Labeling 1, all vertices of D have a singleton label or a paired label.
We relabel the vertices of D, doing so in Dh for fixed h ∈ H , stepwise, until we exhaust every h ∈ H . This procedure, which

we call Labeling 2, is described next.
Suppose vh

∈ Ph
j1,j2

∩ D for some j1, j2 ∈ Ih, h ∈ V (H), and there exists yh
′

∈ Ph′

j1,j2
∩ D for h′

∈ V (H), h′
̸= h. The vertex yh

′

may be labeled by a singleton or paired label, whether Labeling 2 had been performed on Dh′

or not.
Suppose that yh

′

is labeled by a singleton label, say j1. Remove the paired label (j1, j2) from vh and relabel vh by j2.
Suppose yh

′

is labeled by the paired label (j1, j2). Remove the paired label (j1, j2) from vh and then relabel vh arbitrarily
by one of the singleton labels j1 or j2, and then relabel yh

′

by the other singleton label. This completes Labeling 2.
After Labeling 2, a vertex vh of D may have a paired labels (j1, j2) if vh

∈ Ph
j1,j2

and for any h′
∈ NH (h), Dh′

∩ Ph′

j1,j2
= ∅.

We show an example of some labels after Labeling 2 in Fig. 2.
Next we describe Labeling 3. For every h ∈ H , if Dh contains vertices x and y both with paired labels (j1, j2), for some

integers j1, j2,, then we relabel x by the label j1 and y by the label j2. For every h ∈ H , if Dh contains vertices x and y with
paired label (j1, j2), (j2, j3) respectively, for some integers j1, j2, and j3, then we relabel y by the label j3. If x and y are labeled
j1 and (j1, j2) respectively, for some integers j1, j2, we relabel y by j2. We apply this relabeling to pairs of vertices of Dh,
sequentially, in any order. This completes Labeling 3.

For h ∈ H , let Sh1 be the set of vertices of Dh which still have a pair of labels. Notice that after Labeling 3, Sh1 is contained in
CIh . For each vertex in Sh1 , we place each component of the paired label on that vertex in the set Jh1 . For example, if Sh1 contains
vertices with labels (i1, i2) and (i3, i4), then Jh1 = {i1, i2, i3, i4}.

Define the index set Ih1 = [k] − Ih = {iℓ+1, . . . , ik} for vertically dominated cells of Gh.
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The following observations follow from the definition of claw-free:

(1) For j1, j2 ∈ [k] − Ih, no vertex of D ∩ Ph
j1,j2

may dominate any of vh
i1
, . . . , vh

iℓ
. Thus, {vh

i1
, . . . , vh

iℓ
} must be dominated

horizontally in Gh by shared neighbors of {vh
i : i ∈ Ih} from the chamber of Q h

Ih
.

(2) If j1, j2, j3, j4 are distinct elements of [k] and x ∈ Ph
j1,j2

, y ∈ Ph
j3,j4

, then x is not adjacent to y.
(3) Similarly, x ∈ Ph

j1
is not adjacent to any y ∈ Ph

j2,j3
.

(4) By (2), all vertices of Dh
− CJh1

which are adjacent to some vertex of CJh1
must be members of Ph

i for i ∈ Ih1 .
(5) If a vertex of CJh1

is (a) vertically undominated and (b) dominated from outside CJh1
, then it must be a member of Ph

j for
some j ∈ Jh1 , since neither shared neighbors of CJh1

, nor vh
j for j ∈ Jh1 , can be adjacent to vertices outside CJh1

.

Observations (1)–(5) imply the following:

Claim 2.4. If v is a vertically undominated vertex of CJh1
which is not dominated by a shared neighbor (from CJh1

or outside CJh1
),

then it is a private neighbor in CJh1
. Furthermore, v must be dominated by a private neighbor of CIh1

.

Set Dh
ij

= Dh
∩ Ph

ij
for ℓ + 1 ≤ j ≤ k and Dh

Ih1
= Dh

∩ CIh1
. Let Eh

Jh1
be a minimum subset of vertices of Dh

Ih1
so that

(D ∩ CJh1
) ∪

(
D ∩ NH (CJh1

)
)

∪ Eh
Jh1

dominates CJh1
. That is, Eh

Jh1
is a minimum set of vertices with neighbors in CJh1

, which along

with the dominating vertices in CJh1
and NH (CJh1

), dominate CJh1
. However, note that due to Labeling 2 and the definition of Jh1 ,

D ∩ NH (CJh1
) is empty. Thus, Eh

Jh1
is a minimum subset of vertices of Dh

Ih1
so that (D ∩ CJh1

) ∪ Eh
Jh1
dominates CJh1

. By Claim 2.4, Eh
Jh1

is composed of private neighbors of CIh1
, and hence are labeled by a singleton label.

Claim 2.5. For every h ∈ H, |Eh
Jh1
| ≥ |Sh1 |.

Proof. Suppose not. Set j = |Eh
Jh1
| and s = |Sh1 |. Notice that Eh

Jh1
∪ Sh1 dominates CJh1

. Furthermore, since after Labeling 3 label

pairs are disjoint, |Jh1 | = 2s. Note that Eh
Jh1

may contain vertices that are shared neighbors of Γ h, which were relabeled in

Labeling 3 to singleton labels. To address this, we define the set of labels of vertices in Eh
Jh1

which had been reduced from

paired labels to singleton labels as Lh. If we let I ′ = [k] − Jh1 − Lh, then Eh
Jh1

∪ Sh1 ∪ (
⋃

i∈I ′v
h
i ) dominates Gh. However, such a set

contains at most j + s + k − 2s = j − s + k < k vertices, which contradicts the minimality of γ (G). □

By Claim 2.5, Dh contains |Sh1 | vertices labeled by a paired label and at least as many vertices labeled by a singleton label.

Claim 2.6. For a fixed i, 1 ≤ i ≤ k, projecting all vertices such that i is an element of the label (singleton or in a pair) to H produces
a dominating set of H.

Proof. For a fixed i ∈ [k], if Q k
i is not vertically dominated, then Dh must contain a vertex adjacent to vh

i . Such a vertex either
contains i in its label or, after Labeling 2, there exists h′

∈ V (H) adjacent to h, and uh′

∈ Dh′

so that uh′

has i in its label.
In either case, projecting vertices of Dwith i as an element of their labels onto H produces a dominating set of H . □

Call the set of such vertices of D labeled i, Di. Summing over all iwe count at least γ (G)γ (H) vertices of Dwhere we count
the members of Sh1 twice and the members of Eh

Jh1
and Dh

− Sh1 − Eh
Jh1
once, for every h ∈ H . For a fixed sum

∑k
i=1|Di|, |Dh

| is
minimized when we maximize the number of dominating vertices that are counted twice. Thus we obtain,

γ (G)γ (H) ≤

k∑
i=1

|Di| ≤ 2
|D|

2
+

|D|

2
=

3
2
|D|. □
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