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ON THE PROBLEM OF EXISTENCE IN PRINCIPAL
VALUE OF A CALDERÓN-ZYGMUND OPERATOR ON

A SPACE OF NON-HOMOGENEOUS TYPE

BENJAMIN JAYE AND TOMÁS MERCHÁN

Abstract. In this paper we study the relationship between two
fundamental regularity properties of an s-dimensional Calderón-
Zygmund operator (CZO) acting on a Borel measure µ in Rd, with
s ∈ (0, d).

In the classical case when s = d and µ is equal to the Lebesgue
measure, Calderón and Zygmund showed that if a CZO is bounded
in L2 then the principal value integral exists almost everywhere.
However, there are by now several examples showing that this im-
plication may fail for lower-dimensional kernels and measures, even
when the CZO has a homogeneous kernel consisting of spherical
harmonics.

We introduce sharp geometric conditions on µ, in terms of cer-
tain scaled transportation distances, which ensure that an exten-
sion of the Calderón-Zygmund theorem holds. These conditions
are necessary and sufficient in the cases of the Riesz transform and
the Huovinen transform. Our techniques build upon prior work by
Mattila and Verdera, and incorporate the machinery of symmetric
measures, introduced to the area by Mattila.

1. Introduction

In this paper we introduce sharp sufficient conditions on a (locally
finite, non-negative Borel) measure µ which ensure that if a Calderón-
Zygmund operator (CZO) is bounded with respect to L2(µ), then the
operator exists in the sense of principal value. We will be working with
the following class of (particularly smooth) kernels.

Definition 1.1. Fix s ∈ (0, d). A function K : Rd \ {0} → Cd is an
s-dimensional Calderón-Zygmund kernel if there is a constant CK > 0
such that following properties are satisfied for every x, x′ ∈ Rd\{0}:

(1) |K(x)| ≤ CK

|x|s ,

(2) K(−x) = −K(x), and
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2 B. JAYE AND T. MERCHÁN

(3) if |x− x′| ≤ |x|
2

then |K(x)−K(x′)| ≤ CK |x−x′|
|x|s+1 .

Let µ be a measure. We say that the Calderón-Zygmund operator T
associated to K is bounded in L2(µ) if there is a constant C > 0 such
that

(1.1) sup
ε>0

∫

Rd

∣∣∣
∫

Rd\B(x,ε)

K(x− y)f(y)dµ(y)
∣∣∣
2

dµ(x) ≤ C‖f‖2L2(µ)

for every f ∈ L2(µ). The least constant C > 0 for which (1.1) holds
for all f ∈ L2(µ) is called the norm of T .

On the other hand, the CZO T exists in the sense of principal value
if for every complex measure ν,

(1.2) lim
r→0

∫

|x−y|>r
K(x− y)dν(y) exists for µ-almost every x ∈ R

d.

For classical CZOs (s = d) acting in Euclidean space Rd with µ = md

(the Lebesgue measure), a density argument ensures that the bounded-
ness of a CZO in L2(md) implies the existence of the CZO in the sense
of principal value md-almost everywhere; see for instance [CZ, SW].

However, there are by now several examples which show that the
Calderón-Zygmund theorem does not necessarily extend when the Lebesgue
measure is changed to a different underlying measure, see e.g. [CH,
Dav1]. It was shown in [JN2] that there is a measure µ satisfying
µ(B(x, r)) ≤ r for every disc B(x, r) ⊂ C ∼= R2 such that the one-

dimensional CZO associated to the Huovinen kernel K(z) = zk

|z|k+1 ,

k ≥ 3 odd, is bounded in L2(µ) but the principal value integral fails
to exist µ-almost everywhere. Huovinen [H] has previously studied the
geometric consequences of the existence of the principal value integral
associated to this kernel, which plays a significant role in the literature
due to being the prototypical example of a one-dimensional CZ kernel
in the plane for which the Melnikov-Menger curvature formula (see e.g.
[MMV]) fails to hold, see the survey papers [M2, M3].

Notwithstanding these examples, it is expected that an analogue of
the classical Calderón-Zygmund theorem should hold for the s-Riesz
transform, the CZO with kernel K(x) = x

|x|s+1 (x ∈ R
d). Indeed, a

long standing conjecture1 states that if µ is a non-atomic measure,
then whenever the s-Riesz transform operator is bounded in L2(µ), it

1Often referred to as a variant of the David-Semmes question [DS].
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also exists in principal value. This was proved for s = 1 by Tolsa2

(see [To6]), and for s = (d − 1), where it can be proved by combining
the deep results of Eiderman-Nazarov-Volberg [ENV], Nazarov-Tolsa-
Volberg [NToV], and Mattila-Verdera (stated as Theorem 1.3 below)
[MV]. It is an open problem for s = 2, . . . , d− 2.

The results described in the preceding paragraphs combine to show
that the problem of when (1.1) implies (1.2) depends quite subtly on
the algebraic structure of the underlying kernel in the operator, and the
purpose of this paper is to develop some theory to better understand
this.

In general, the existence of the principal value integral should be
viewed as stronger (but more qualitative) than the L2 boundedness
of the associated singular integral operator. Indeed, Nazarov-Treil-
Volberg ([NTV2], see also Tolsa [To3]), proved the following theorem:

Theorem 1.2. Let µ be a measure with finite upper density, i.e.

Dµ,s(x) := lim sup
r→0

µ(B(x, r))

rs
<∞

for µ-almost every x ∈ R
d, and satisfying (1.2) with ν = µ. Then for

every ε > 0, there exists a set Eε with µ(Rd\Eε) < ε such that T is
bounded in L2(µ|Eε) with norm depending on ε.

1.1. A sharp sufficient condition for the existence of principal
values. An important result relating L2 boundedness to the existence
of principal values is the following theorem of Mattila and Verdera3

[MV]. Set Ms to be the collection of measures µ satisfying

µ(B(x, r)) ≤ rs for every x ∈ R
d and r > 0.

Theorem 1.3 (The Mattila-Verdera Theorem). Fix µ ∈ Ms. Suppose
that a CZO T is bounded in L2(µ), and µ has zero s-density in the
sense that

Dµ,s(x) := lim sup
r→0

µ(B(x, r))

rs
= 0

for µ-almost every x ∈ Rd. Then T exists in principal value (the limit
(1.2) holds for every complex measure ν).

The zero density condition in the Mattila-Verdera theorem is neces-
sary for the principal value integral to exist for the s-Riesz transform if

2Tolsa only considered the case d = 2, but the method extends.
3In [MV], the theorem is stated in the generality of a large class of metric spaces.
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s /∈ Z (see Theorem 1.5 below), but is not sharp if s ∈ Z (for instance
consider the s-dimensional Hausdorff measure restricted to an s-plane).

Our first main result is a natural strengthening of the Mattila-Verdera
theorem for CZOs of integer dimension that gives a necessary and suf-
ficient condition in the case of the s-Riesz transform. To state the
theorem, we will require the introduction of (a variant of) the Lips-
chitz transportation number. Variants of transportation numbers have
proved very useful in the geometric study of singular integral operators,
following their introduction to the area by Tolsa [To1, To2].

Fix s ∈ Z. Set G(s, d) to be the collection of s-dimensional linear
subspaces of Rd. For x ∈ Rd and r > 0 we define the transportation
distance from µ to the affine plane x+ L, L ∈ G(s, d), by

αµ,L(B(x, r)) = sup
f∈Lip0(B(x,4r))

‖f‖Lip≤
1
r

∣∣∣
1

rs

∫

Rd

ϕ
( | · −x|

r

)
fd(µ− cµ,LHs

x+L)
∣∣∣,

where

• we denote by Hs
x+L the s-dimensional Hausdorff measure re-

stricted to the affine plane x+ L,
• ϕ is a smooth function that satisfies ϕ ≡ 1 on (0, 3) and supp(ϕ) ⊂
(0, 4),

• Lip0(B(x, 4r)) denotes the collection of Lipschitz continuous
functions compactly supported in B(x, 4r) (see also Section 2),

• and

cµ,L =

∫

Rd

ϕ
( |·−x|

r

)
dµ

[∫

Rd

ϕ
( |·−x|

r

)
dHs

x+L

]−1

.

The number cµ,L of course depends on x and r, but we will only consider
it at a fixed scale at any given time so we suppress this dependence.
We then define the transportation distance to affine s-planes by

αflat
µ,s (B(x, r)) = inf

L∈G(s,d)
αµ,L(B(x, r)).

Observe that αflat
µ,s (B(x, r)) can be small if either the density µ(B(x,4r))

rs

is small, or if µ is well approximated by an s-plane within the ball
B(x, 4r). With this notation we have the following theorem:

Theorem 1.4. Fix s ∈ Z and µ ∈ Ms. Suppose that T is bounded in
L2(µ), and

(1.3) lim
r→0

αflat
µ,s (B(x, r)) = 0 for µ-almost every x ∈ R

d,
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then T exists in principal value.

Theorems 1.3 and 1.4 are both sharp for the s-Riesz kernel K(x) =
x

|x|s+1 . Indeed, we recall the following theorem, which is a consequence

of results by Tolsa [To4] and Ruiz de Villa-Tolsa [RVT]. For a relatively
simple direct proof see Theorem 1.2 of [JM].

Theorem 1.5. Fix µ with Dµ,s(x) < ∞ for µ-almost every x ∈ Rd.
Suppose that the CZO associated to the s-Riesz kernel exists in principal
value. Then

(1) s 6∈ Z and µ has zero density, or
(2) s ∈ Z and µ satisfies limr→0 α

flat
µ,s (B(x, r) = 0 for µ-a.e x ∈ Rd.

Remark 1.6. It is well-known, see e.g. [MM, Ver], that if a measure
µ is s-rectifiable4, then any associated s-dimensional CZO T exists in
principal value integral. However, there are many examples of mea-
sures µ, see e.g. Section 5.8 of [P], whose support has locally finite
s-dimensional measure and the condition (1.3) holds, but µ is not rec-
tifiable.

Theorem 1.5 shows that the additional condition placed on the mea-
sure in Theorems 1.3 and 1.4 are necessary conditions for the s-Riesz
transform to exist in principal value5. Consequently they are the sharp
conditions to consider when working with a large class of operators.
However, there are other CZOs of particular interest for which our
method enables us to provide more information. We illustrate this
with the case of the Huovinen kernels.

1.2. On the Huovinen kernels. A second goal of this work is to an-
swer a question left open by the work [JN2] and identify the geometric
condition responsible for the difference between L2 boundedness and
existence of principle value for the CZO associated to the Huovinen

kernel Kk(z) =
1
|z|
(
z
|z|
)k
, k odd.

A k-spike measure associated to a subspace L ∈ G(1, 2), and ω ∈ C,
takes the form

νm,L,ω =
m−1∑

n=0

Heπin/mL+ω, where m ∈ N divides k (henceforth m | k).

4that is, µ is absolutely continuous with respect to Hs, and its support is con-
tained in the union of a countable number of s-dimensional Lipschitz (or C1) sub-
manifolds, up to an exceptional set of s-dimensional Hausdorff measure zero

5However, it is not known whether (1.3) already follows from the L2(µ) bound-
edness of the s-Riesz transform if s = 2, . . . , d − 2, which is (a generalization of)
the aforementioned question of David-Semmes [DS].
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We set Spikek to be the collection of all such k-spike measures over
L ∈ G(1, 2), ω ∈ C, and m | k.
For z ∈ C, r > 0, we proceed to define the modified transportation

number α
Spikek
µ (B(z, r)) by

αSpikek
µ (B(z, r)) = inf

ν∈Spikek
z∈supp(ν)

sup
f∈Lip0(B(z,4r))

‖f‖Lip≤
1
r

∣∣∣
1

r

∫

B(z,r)

ϕ
( | · −z|

r

)
f d(µ−cµ,νν)

∣∣∣,

where

cµ,ν =

∫

Rd

ϕ
( |·−z|

r

)
dµ

[∫

Rd

ϕ
( |·−z|

r

)
dν

]−1

.

Theorem 1.7. Fix k odd and µ ∈ M1. Suppose that the CZO T
associated to the Huovinen kernel Kk is bounded in L2(µ). Then T

exists in principal value if and only if limr→0 α
Spikek
µ (B(z, r)) = 0 for

µ-almost every z ∈ C.

The ‘only if’ direction of this theorem was shown in Theorem 1.5 of
[JM], which in turn was based upon Huovinen’s work [H].
The example [JN2] shows that L2(µ)-boundedness cannot imply by

itself the existence of T in the sense of principal value, so L2(µ)-

boundedness does not imply the property limr→0 α
Spikek
µ (B(z, r)) = 0

for µ-almost every z ∈ C.

Both Theorems 1.4 and 1.7 follow from a more general statement
Theorem 3.4 below which relates the existence of principal value to the
transportation distance to a certain collection of symmetric measures6

associated to the operator, see Sections 3 and 4. Theorem 3.4 is proved
using the same basic scheme as the one followed by Mattila-Verdera to
prove Theorem 1.3 (and we recover this theorem as a simple special
case of Theorem 3.4), but significant modifications are required, since
dealing with transportation numbers introduces new geometric situa-
tions that do not arise in the set-up of [MV].

Acknowledgement. We thank the referee for carefully reading the
paper and making several remarks which have helped the presentation
of the results.

2. Preliminaries and Notation

In this section we collect some definitions and preliminaries.

6Introduced by Mattila [M].
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• We shall denote by C > 0 and c > 0 respectively large and small
constants that may change from line to line and can depend on
d, s, the constant CK from Definition 1.1 and the quantities
Θ and Csb introduced in Assumptions 3.3 in Section 3. By
A . B, we shall mean that A ≤ CB for some constant C > 0.
By A ≪ B we shall mean that A ≤ c0B for some sufficiently
small constant c0 > 0 depending on d, s, CK, Csb and Θ.

• We shall denote G(s, d) as the collection of s-dimensional linear
subspaces of Rd.

• For x ∈ Rd and r > 0, B(x, r) denotes the open ball centered
at x with radius r.

• For a function f defined on an open set U ⊂ R
d, define

‖f‖Lip(U) = sup
x,y∈U, x 6=y

|f(x)− f(y)|
|x− y| .

In the case U = Rd, we write ‖f‖Lip instead of ‖f‖Lip(Rd).

• For an open set U ⊂ R
d, define Lip0(U) to be the collec-

tion of functions f supported on a compact subset of U with
‖f‖Lip(U) <∞.

• We denote by supp(µ) the closed support of the measure µ; that
is,

supp(µ) = R
d \ {∪B : B is an open ball with µ(B) = 0}.

• We denote by Ms the collection of non-negative measures µ
satisfying the growth bound µ(B(x, r)) ≤ rs for all x ∈ R

d and
r > 0.

• For κ, r > 0 and x ∈ Rd, set ηκ,r,x to be a non-negative ra-
dial function satisfying ηκ,r,x ≡ 1 on B(x, r), ηκ,r,x ≡ 0 on
R
d\B(x, (1 + κ)r), and ‖ηκ,r,x‖Lip ≤ 1

κr
.

• We introduce the bump function ϕ : [0,∞) 7→ [0,∞), satisfying
ϕ ∈ C∞, ϕ ≡ 1 on (0, 3), and suppϕ ⊂ (0, 4).

• Given a Borel measure µ, for any x ∈ Rd and r > 0, we set

Dµ(B(x, r)) =
µ(B(x, r))

rs
, and

Iµ(B(x, r)) =

∫

Rd

ϕ

( |x− y|
r

)
dµ(y).

• Given a complex measure σ, we also define the truncated oper-
ators Tr:

Tr(σ)(x) =

∫

Rd\B(x,r)

K(x− y) dσ(y), x ∈ R
d.
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• Given a measure µ and f ∈ L1
loc(µ), we define the average

−
∫

E

fdµ =
1

µ(E)

∫

E

fdµ.

3. The general theorem

We now move onto stating our general result. Fix s ∈ (0, d) (integer
or not), and fix an s-dimensional Calderón-Zygmund kernel K.

3.1. Symmetric measures. Two notions of symmetry of a measure
will play a role in our results. The first is Mattila’s notion of a sym-
metric measure.

Definition 3.1 (Symmetric measure). Let ν be a measure.

• A point x ∈ Rd is a K-symmetric point for ν, written x ∈
S(K, ν) := S(ν), if

∫

B(x,r)

K(x− y)|x− y|sdν(y) = 0 for every r > 0.

• The measure ν is a K-symmetric measure if supp(ν) ⊂ S(ν).
• Set SK,s := Ss = {ν : ν is K-symmetric, ν ∈ Ms}.

We shall also require a local notion of reflection symmetry, defined
as follows.

Definition 3.2 (Reflection symmetric measure). A measure ν is re-
flection symmetric about z in a ball B if, whenever E ⊂ B is a Borel
set, then ν(2z − E) = ν(E).

We can now introduce our main assumptions required to state the
general theorem.

Assumptions 3.3. Set Ss to be any subset of Ss with the following
properties:

(1) (Small Boundaries) There exists Csb > 0 such that whenever
ν ∈ Ss, x ∈ R

d, and r > 0 satisfy B(x, r/2) ∩ supp(ν) 6= ∅,
then for every τ ∈ (0, 1],

ν(B(x, (1 + τ)r)\B(x, r)) ≤ Csbτν(B(x, r)).

(2) (Nearby Points of Reflection Symmetry) There exists Θ ≥ 1
such that for every ν ∈ Ss, r > 0, and x ∈ supp(ν), the following
alternative holds:
(a) Either ν is reflection symmetric about x in B(x, r), or
(b) There exists x̃ in supp(ν)∩B(x,Θr) such that ν is reflection

symmetric about x̃ in B(x̃, 64Θr).
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For a measure µ, we define the transportation distance to a measure
ν on the scale B(x, r) by

αµ,ν(B(x, r)) = sup
f∈Fx,r

∣∣∣
1

rs

∫

Rd

ϕ
( |x− y|

r

)
f(y)d[µ− cµ,νν](y)

∣∣∣,

where Fx,r = {f ∈ Lip0(B(x, 4r)), ‖f‖Lip ≤ 1
r
}, and

cµ,ν(x, r) := cµ,ν =





Iµ(B(x, r))

Iν(B(x, r))
if Iν(B(x, r)) > 0,

0 if Iν(B(x, r)) = 0.

The transportation distance of µ to the class Ss on the scale B(x, r) is
then given by

αµ,Ss(B(x, r)) = inf
ν∈Ss:x∈S(ν)

supp(ν)∩B(x,r/8)6=∅

αµ,ν(B(x, r)).

We now proceed to state the main theorem of the paper.

Theorem 3.4. Fix µ ∈ Ms. Suppose that the s-dimensional CZO
associated to K is bounded in L2(µ). Assume also that

lim
r→0

αµ,Ss(B(x, r)) = 0

for µ-almost every x ∈ Rd. Then for every finite complex measure σ,

lim
r→0

∫

|x−y|>r
K(x− y)dσ(y) exists for µ-almost every x ∈ R

d.

Remark 3.5. Theorem 3.4 leads to the natural question of whether the
Assumptions 3.3 are necessary. It would certainly be a very nice result if
one could show that, in Theorem 3.4, one could take Ss to be the whole
class Ss of symmetric measures. We do not have a counterexample to
show this cannot be true.

3.2. Scheme of proof. Before finishing this section, we comment on
the scheme of the proof. In Section 5 we recall a well-known reduc-
tion that it suffices to only prove the existence of the limit (1.2) with
ν = µ. Our goal will be to prove that the principal value integral

limr→0 Tr(µ) equals the Mattila-Verdera weak limit function T̃ (µ)(x) =
limr→0

1
µ(B(x,r))

∫
B(x,r)

T (χRd\B(x,r)µ)dµ for µ-almost every x ∈ Rd (the

existence of the Mattila-Verdera weak limit function is ensured by the
L2(µ) boundedness of the operator, see Theorem 9.1). To implement
this idea will require a careful study of several truncated integrals where
the geometry imposed by the condition limr→0 αµ,Ss(B(x, r)) = 0 will
be essential (see Section 7).
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Observe that the transportation coefficient αµ,Ss(B(x, r)) is small in
two scenarios. Either

• the density µ(B(x,4r))
rs

is small, or
• µ inherits (to some extent) the geometric structure of some
symmetric measure ν ∈ Ss in the ball B(x, 4r).

We will often argue via this alternative in what follows, as we may have
that limr→0 αµ,Ss(B(x, r)) = 0 as a result of alternating between these
two scenarios. In the case of the Mattila-Verdera theorem (Theorem
1.3), only the first scenario occurs.
It is worth remarking that, if one only wants to prove Theorem 1.4,

then the proof that follows can be simplified in several places. However
the proof of Theorem 1.7 requires a more careful study due to the
fact that the symmetric measures in this case (spike measures) are not
reflection symmetric at every point and scale.
As is common in analysis on non-homogenous spaces, we will look

to carry out our analysis on doubling scales (where µ(B(x,Ar)) is not
much larger than µ(B(x, r)), for some fixed A). We shall therefore
revisit some of the basic tools introduced by David-Mattila [Dav3, DM].

4. Main applications

In this section we study two instances in which the general theorem
Theorem 3.4 can be applied, resulting in recovering Theorem 1.3 as
well as proving Theorems 1.4 and 1.7.

4.1. Theorem 1.3. We first remark that in order to recover the Mattila-
Verdera theorem (Theorem 1.3), we consider the case when the collec-
tion Ss consists of the zero measure. Then limr→0 αµ,Ss(B(x, r)) = 0
at x ∈ Rd if and only if Dµ,s(x) = 0. In fact, in this case, our proof
essentially collapses to the proof found in [MV].

4.2. Theorem 1.4. Fix s ∈ Z with s ∈ (0, d), and let

Ss = {ν = cHs
L : L ∈ G(s, d), c > 0, ν ∈ Ms}.

It is clear that for any s-dimensional CZ kernel, every measure in Ss is
a symmetric measure. Therefore, if αflat

µ,s (B(x, r)) → 0 as r → 0, then
αµ,Ss(B(x, r)) → 0 as r → 0.
Every measure in Ss fulfils the properties concerning power growth,

small boundaries and nearby points of reflection symmetry from As-
sumptions 3.3. For the property of nearby points of reflection sym-
metry, notice that every point in the s-plane is a reflection symmetric
point and hence satisfies part (a) of the definition. Therefore Theorem
3.4 is applicable and Theorem 1.4 follows.
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4.3. Theorem 1.7. In the case of Huovinen kernels Kk(z) = zk

|z|k+1

where k is odd, we set S1 = SKk,1 and we recall the following theorem,
which is essentially due to Huovinen [H] (see Theorem 1.5 of [JM]).

Theorem 4.1. If s = 1 then

SKk,1 = {cν : c ≥ 0, ν ∈ Spikek, cν ∈ M1}
and for ν ∈ Spikek, S(ν) = supp(ν).

As a consequence of the theorem, we have that αµ,S1(B(z, r)) =

α
Spikek
µ (B(z, r)) for z ∈ C and r > 0.
In [JM], it was proved that the existence of T in the sense of principal

value implies that limr→0 αµ,Ss(B(z, r)) = 0 for µ-a.e. z ∈ C (see
Theorem 1.4 and Proposition A.1 in [JM]).
To conclude Theorem 1.7 we need to verify that Assumptions 3.3 are

satisfied for the collection of measures S1 = SKk,1. It is clear that such
measures satisfy the small boundaries condition. Regarding the nearby
points of reflection symmetry property, let ν = c

∑m−1
n=0 Heπin/mL+z ∈

SK,1 for some m | k, L ∈ G(1, 2) and z ∈ C; and let y ∈ supp(ν).
If ν is not reflection symmetric about y in B(y, r), then we have that
|y − z| ≤ r

sin(π/k)
(m ≤ k) and ν is reflection symmetric about z in

B(z, R) for every R > 0, hence we may choose Θ = 2
sin(π/k)

.

5. Reduction to the case ν = µ in (1.2)

We next record a standard result, whose proof may be found in
Section 8.2.1. of Tolsa [To5].

Theorem 5.1. Fix µ ∈ Ms, and a CZO kernel K. Suppose that the
CZO T associated to K is bounded in L2(µ). If (1.2) holds with ν = µ,
then (1.2) holds for every ν ∈M(Rd).

Therefore, in order to prove Theorem 3.4, it suffices to prove the
existence of the limit in (1.2) in the case when ν = µ.

6. Introductory lemmas

In this section, we present some lemmas and remarks that will be
used extensively throughout the paper.

Remark 6.1. Suppose ν is a measure, and K an s-dimensional CZ-
kernel. Notice that if x ∈ S(ν), then if ϕ : R → R is a Lipschitz
function with

∫∞
0

|ϕ′| dr <∞ and
∫
|K(x−y)||x−y|s|ϕ(|x−y|)| dν(y) <
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∞, then
∫
K(x− y)|x− y|sϕ(|x− y|) dν(y)

= −
∫ ∞

0

∫

B(x,r)

K(x− y)|x− y|sϕ′(r) dν(y) dr = 0.

Remark 6.2 (Scaling). We will often rescale estimates to prove them
for a unit scale. To this end we make some simple observations. Fix

x ∈ Rd and r > 0. For a measure ν, set νx,r :=
ν(r·+x)
rs

. Observe that
ν ∈ Ms if and only if νx,r ∈ Ms.

(1) Firstly, if K is a CZ kernel, then the kernel

Kr = rsK(r ·)
is a CZ kernel with the same constants (i.e. we can take CKr =
CK).

(2) Secondly, a function f ∈ Fx,r if and only if the function

f(r ·+x) ∈ F0,1.

(3) Thirdly, for a collection Ss of symmetric measures associated to
K satisfying Assumptions 3.3, the collection

S̃s = {νx,r :=
ν(r ·+x)

rs
: µ ∈ Ss}

is a collection of symmetric measures associated toKr satisfying
the Assumptions 3.3 (with the same constants Θ and Csb).

(4) Combining the two previous observations we have

αµ,Ss(B(x, r)) = αµx,r ,S̃s(B(0, 1)).

Lemma 6.3. Fix κ > 0. Suppose that ψ is a bounded Lipschitz con-
tinuous function satisfying ψ ≡ 0 on B(0,κ). For every x ∈ Rd, the
function

F (y) = K(x− y)ψ(|x− y|)
is a bounded Lipschitz continuous function, with

(6.1) ‖F‖∞ .
‖ψ‖∞
κs

and ‖F‖Lip .
‖ψ‖∞
κs+1

+
‖ψ‖Lip
κs

.

Proof. We first observe that, due to (1) from Definition 1.1, and the
properties of ψ,

|F (y)| . 1

|x− y|s‖ψ‖∞χRd\B(x,κ)(y) .
‖ψ‖∞
κs

.
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To see the Lipschitz property, fix y, y′ ∈ Rd. If both |x− y| < κ and
|x − y′| < κ, then |F (y)− F (y′)| = 0, so assume that |x − y| ≥ κ. If

|y − y′| ≥ κ

3
, then |F (y)− F (y′)| ≤ 2‖F‖∞ . ‖ψ‖∞

κs .
‖ψ‖Lip

κs+1 |y − y′|.
On the other hand, if |y− y′| < κ

3
, then |x− y′| ≥ 2κ

3
. Therefore, we

may apply (3) of Definition 1.1, to get that

|K(x− y)−K(x− y′)| . |y − y′|
|x− y′|s+1

.
|y − y′|
κs+1

,

and consequently,

|F (y)− F (y′)| ≤|K(x− y)−K(x− y′)|‖ψ‖∞
+ |K(x− y)[ψ(|x− y|)− ψ(|x− y′|)]|.

The first term is bounded by a multiple of ‖ψ‖∞
κs+1 |y−y′|, while the second

term is at most a constant multiple of
‖ψ‖Lip

κs |y − y′|. �

6.1. Thin boundary balls.

Lemma 6.4. Fix a measure µ, x ∈ Rd, r > 0, and an even integer
M > 0. There exists an even integer M ′ ∈ [M + 210, 211M ] such that

µ(B(x, (M ′ + 210)r)\B(x, (M ′ − 210)r)) ≤ 2

M
µ(B(x, 211Mr)).

Proof. For j = 1, . . . , M
2
, set Aj = B(x, (M + j2 · 210)r)\B(x, (M +

2(j − 1)210r)). There are M/2 disjoint annuli Aj, all contained in
the ball B(x, (M + M210)r) ⊂ B(x, 211Mr), so we must have that
µ(Aj) ≤ 2

M
µ(B(x, 211Mr)) for some j. Set M ′ = M + (2j − 1)210 ∈

[M + 210, 211M ]. �

6.2. The David-Mattila toolbox.

Lemma 6.5. Let σ be a complex measure on R
d. Let x, x′ ∈ R

d be
such that |x− x′| ≤ 1

2
dist(x, supp σ) =: ρ. Then

|T (σ)(x)− T (σ)(x′)| . |x− x′|
ρ

sup
r>0

|σ|(B(x, r))

rn
.

Proof. Using property (3) of Definition 1.1,

|T (σ)(x)− T (σ)(x′)| ≤
∫

|K(x− y)−K(x′ − y)| d|σ|(y)

.

∫

|x−y|>ρ

|x− x′|
|x− y|n+1

d|σ|(y) . |x− x′|
ρ

sup
r>0

|σ|(B(x, r))

rn
,

as required. �
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Lemma 6.6 (The David-Mattila lemma). Fix a measure µ, and A > 1.
If

Dµ(B(x,A−(ℓ+1)r)) ≤ 1

A
Dµ(B(x,A−ℓr)) for ℓ = 0, ..., L− 2,

then we have

|Tr(µ)(x)− TA−Lr(µ)(x)| .
As

A− 1
Dµ(B(x, r)).

Proof. Appealing to (1) from Definition 1.1 we get that

|Tr(µ)(x)− TA−Lr(µ)(x)| =
∣∣∣∣
∫

A−Lr≤|y−x|<r
K(x− y) dµ(y)

∣∣∣∣

.

L∑

k=1

∫

A−kr≤|y−x|<A−(k−1)r

1

|y − x|s dµ(y)

.

L∑

k=1

µ(B(x,A−(k−1)r))

(A−kr)s
.

But, for k = 1, . . . , L− 1

Dµ(B(x,A−kr)) ≤ Dµ(B(x,A−(k−1)r))

A
≤ · · · ≤ Dµ(B(x, r))

Ak
,

from which we get that

L∑

k=1

µ(B(x,A−(k−1)r))

(A−(k−1)r)s
.

1

A− 1
Dµ(B(x, r)).

Whence, |Tr(µ)(x)− TA−Lr(µ)(x)| . As

A−1
Dµ(B(x, r)). �

7. Basic estimates for measures with small
transportation number

For this section, fix µ ∈ Ms. Fix M ≫ 1 an even integer, α ≪ 1
and ε ≪ 1. Here

• M is an enlargement parameter which handles the non-local
part of the integral operator,

• α is the size bound for the transportation number, and
• ε is a size threshold for the density of the measure.

We recall that a constant C may change from line to line and may
depend on d, s, the constants CK from Definition 1.1 and Csb and Θ
from Assumptions 3.3.
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7.1. Small Boundaries.

Lemma 7.1 (Small Annulus). Fix κ ∈ (0, 1/4]. There is a constant
C > 0 such that if αµ(B(x, r)) < α and x0 ∈ B(x, r/4), then

µ(B(x0, (1 + κ)r)\B(x0, r))

rs
.
α

κ
+ κ

Proof. Due to Remark 6.2, we may suppose x = 0 and r = 1. Fix
κ ∈ [0, 1/4) and introduce a cutoff function ψκ with ‖ψκ‖Lip ≤ 1

κ
which

satisfies ψκ ≡ 1 on [1, 1 + κ] and ψκ ≡ 0 on [0, 1 − κ] ∪ [1 + 2κ,∞).
We then denote by ψκ,x0 the bump function ψκ,x0 = ψκ(| ·−x0|). Then
κψ ∈ F0,1 and so for a measure ν ∈ Ss with αµ,ν(B(0, 1)) < α,

µ(B(x0, (1 + κ))\B(x0, 1)) ≤
∫

Rd

ϕψκ,x0dµ ≤ cµ,ν

∫

Rd

ϕψκ,x0dν +
α

κ
.

Since x0 ∈ B(0, 1
4
) and supp(ν)∩B(0, 1

8
) 6= ∅, it follows that B(x0,

1
2
)∩

supp(ν) 6= ∅. Hence, by property (1) from Assumptions 3.3, and the
fact that µ ∈ Ms,

Iµ(B(0, 1))

Iν(B(0, 1))

∫

Rd

ϕψκ,x0dν . κ
Iµ(B(0, 1))

Iν(B(0, 1))
Iν(B(0, 1)) . κµ(B(0, 4)) . κ,

as required. �

The following corollary enables us to move between rough and smooth
cut-offs of a singular integral operator.

Corollary 7.2 (Rough to smooth cut-off). Fix κ > 0, x ∈ Rd and
r > 0. If αµ(B(x, r)) < α, then

|T ([1− ηκ,r,x]µ)(x)− Tr(µ)(x)| .
α

κ
+ κ.

Proof. We may set x = 0, r = 1. The left hand side of the inequality is
∣∣∣
∫

B(0,1+κ)\B(0,1)

ηκ,1,0(y)K(y)dµ(y)
∣∣∣.

In this expression, |K(y)| . 1 on the domain of integration, so the ex-
pression is bounded by Cµ(B(0, 1+κ)\B(0, 1)) from which we conclude
the proof using Lemma 7.1. �

7.2. Doubling properties.

Lemma 7.3 (Doubling). Fix x ∈ Rd, r > 0 and x0 ∈ B(x, r
4
). If

αµ(B(x, r)) < α, then

Dµ(B(x0, 2r)) . Dµ(B(x0, r)) + α.
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Proof. Assume again that x = 0 and r = 1 (Remark 6.2). Let φ ∈
Lip0(R

d) be a cutoff function with ‖φ‖Lip ≤ 4 which satisfies φ ≡ 1 on
B(x0,

3
4
) and supp(φ) ⊂ B(x0, 1).

For a measure ν ∈ Ss, B(0, 1
8
)∩supp(ν) 6= ∅, so B(x0,

3
8
)∩supp(ν) 6=

∅. Therefore, we may appeal to the small boundaries property (1) in
Assumptions 3.3 repeatedly to obtain the following chain of inequalities

ν(B(x0, 6)) . ν(B(x0, 3)) . ν(B(x0, 3/2) . ν(B(x0, 3/4)),(7.1)

and, consequently, Iν(B(0, 1)) . ν(B(x0, 3/4)).
Suppose now ν ∈ Ss is such that αµ,ν(B(0, 1)) < α. Then, since

1
4
φ ∈ F0,1,

µ(B(x0, 2)) ≤ Iµ(B(0, 1)) ≤ Iν(B(0, 1))∫
Rd ϕφ dν

(∫

Rd

ϕφ dµ+ 4α

)

. µ(B(x0, 1)) + α,

as required. �

We will often use the previous lemma in the form of the following
Corollary.

Corollary 7.4. There exists a constant C0 > 0 (depending on d, s,
and Csb) such that, if Q ∈ [1,M2], x0 ∈ B(x, r

4
), and αµ(B(x, βr)) < α

for all β ∈ [1,M2], then

(1) if Dµ(B(x0, Qr)) <
√
α, then Dµ(B(x0,M

2r)) .MC0
√
α,

(2) otherwise, Dµ(B(x0,M
2r)) .MC0Dµ(B(x0, Qr)).

Proof. From Lemma 7.3 we have, for some C > 2, that Dµ(B(x0, 2t) ≤
CDµ(B(x0, t)) + Cα for all t ∈ [r,M2r]. Consequently

Dµ(B(x0,M
2r)) ≤ CDµ(B(x0,

M2

2
r)) + Cα

≤ ... ≤ C log2M
2

Dµ(B(x0, Qr)) +

log2M
2∑

n=1

Cnα

.MC0 [Dµ(B(x0, Qr)) + α],

for some constant C0 > 0. The alternative follows easily from this
inequality. Indeed, if Dµ(B(x0, Qr)) <

√
α, it follows that

Dµ(B(x0,M
2r)) .MC0

√
α,

whereas if Dµ(B(x0, Qr)) ≥
√
α, then,

Dµ(B(x0,M
2r)) .MC0Dµ(B(x0, Qr)),

as required. �
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7.3. The small density/reflection symmetry alternative.

Lemma 7.5 (Alternative). Provided that α is small enough in terms of
M and ε, the following statement holds: If αµ(B(0, βr)) < α for every
β ∈ [ 1

16
, 250Θ], then for any measure ν ∈ Ss for which αµ,ν(B(0,Mr)) <

α, either

(1) there exists x̃ ∈ B(0, r) with ν reflection symmetric in B(x̃, 32r),
or there exists x̃ ∈ B(0, (32Θ + 1)r) such that ν is reflection
symmetric in B(x̃, 64 · 32Θr), or

(2) µ(B(0, 250Θr)) . εrs.

Proof. Set r = 1. Fix ε′ > 0. Suppose first that µ(B(0, 1
16
)) ≥ ε′.

Fix f satisfying f ≡ 1 on B(0, 1/16), f ≥ 0, supp(f) ⊂ B(0, 1/8) and
‖f‖Lip ≤ C. Then

∣∣∣
1

Ms

∫

Rd

f d
(
µ− Iµ(B(0,M))

Iν(B(0,M))
ν
)∣∣∣≤ Cαµ,ν(B(0,Mr)) ≤ Cα.

Since
∫
Rd fdµ > ε′, rearranging this gives

∣∣∣
∫

Rd

fdν
∣∣∣≥

(
ε′ − CαMs

)Iµ(B(0,M))

Iν(B(0,M))
> 0

provided that CMsα < ε′. Under this condition on α we therefore
can find an element x̃ν ∈ supp(ν) ∩ B(0, 1/8). Applying (2) in the
definition of ν ∈ Ss with scale 32 at x̃ν , we find that either ν is reflection
symmetric in about x̃ν in B(x̃ν , 32), or there exists x̃′ν ∈ B(x̃ν , 32Θ) ⊂
B(0, 32Θ+ 1) with ν reflection symmetric about x̃′ν in B(x̃′ν , 64 · 32Θ).
Now suppose instead µ(B(0, 1/16)) ≤ ε′ holds. Since αµ(B(0, Q)) <

α for every Q ∈ [ 1
16
, 250Θ], we may repeatedly apply Lemma 7.3 and

get that Dµ(B(0, 250Θ)) . Dµ(B(0, 1/16)) + α . ε′ + α. Therefore,
if ε′ = cε for a sufficiently small constant c > 0 (depending on d, s
and Θ), and α is small enough in terms of ε, we get that (2) of the
alternative holds. �

8. The three main estimates

In this section we derive our main technical estimates. Again fix
µ ∈ Ms, M ≫ 1 an even integer, α ≪ 1 and ε ≪ 1. We use the
notation −

∫
E
fdµ = 1

µ(E)

∫
E
fdµ. Recall the bump function ηκ,r,x from

Section 2.

8.1. Long range comparison lemma.
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Proposition 8.1. If x ∈ Rd, r > 0, and M ′ ∈ [M + 210, 211M ] is
chosen as in Lemma 6.4, then

∣∣∣T ([1−η 1
M′ ,M

′r,x]µ)(x)−−
∫

B(x0,Qr)

T ([1− η 1
M′ ,M

′r,y]µ)(y)dµ(y)
∣∣∣.

1

M

for every Q ∈ [1, 28] and x0 ∈ B(x, r).

Proof. Without loss of generality, take r = 1. For three points y, y′, y′′ ∈
B(x0, 2

8), we observe two estimates. Firstly,
∣∣∣
∫

Rd

K(y − z)
[
η 1

M′ ,M
′,y′(z)− η 1

M′ ,M
′,y′′(z)]dµ(z)

∣∣∣

≤
∫

B(x0,(M ′+210)\(M ′−210))

|K(y − z)|dµ(z)

.
1

Ms
µ(B(x0, (M

′ + 210)\B(M ′ − 210)))

Lemma 6.4
.

1

M
Dµ(B(x0, 2

12M)) .
1

M
.

Secondly, arguing as in Lemma 6.5, we have the estimate∫

Rd

|K(y − z)−K(y′ − z)|[1 − η 1
M′ ,M

′,y′′(z)]dµ(z) .
1

M ′ .
1

M
.

The lemma now follows from the triangle inequality. �

Corollary 8.2. If, in addition to the assumptions of Proposition 8.1,
αµ(B(x, βr)) ≤ α for all β ∈ [ 1

M
,M2], then for any δ > 0, we can

• choose M sufficiently large in terms of δ, and then
• choose α sufficiently small in terms of M and δ,

so that for all t ∈ [ r
M
,Mr],

∣∣∣Tt(µ)(x)−−
∫

B(x0,Qr)

T (1− η 1
M′ ,M

′r,yµ)(y)|dµ(y)
∣∣∣≤ δ.

Proof. Suppose r = 1. Fix κ ∈ (0, 1
2
). In order to apply Proposition

8.1, we should estimate |Tt(µ)(x) − T ([1−η 1
M′ ,M

′,x]µ)(x)|, which is at
most∣∣∣Tt(µ)(x)−T ([1− ηκ,t,x]µ)(x)

∣∣∣+
∣∣∣T ([η 1

M′ ,M
′,x − ηκ,t,x]µ)(x)

∣∣∣= I + II.

Appealing to Corollary 7.2 we observe that I .
(
α
κ
+ κ

)
. To estimate

II, first observe that ‖ηκ,t,x‖Lip . M
κ

(t ≥ 1
M
), and ‖η 1

M′ ,M
′,x‖Lip . 1.

Therefore, from Lemma 6.3 we infer that the function f(y) = K(x −
y)[η 1

M′ ,M
′,x(y) − ηκ,t,x(y)] has Lipschitz norm at most CM

κs+1 , and so

the function cκs+1

M2 f ∈ Fx,M ′ for some small constant c > 0. On the
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other hand, if ν ∈ S and x ∈ S(ν), then from Remark 6.1 we have∫
Rd f(y)dν = 0. Insofar as αµ(B(x,M ′)) < α, we therefore obtain

II =
∣∣∣
∫

Rd

fdµ
∣∣∣.Ms+2 α

κs+1
.

The quantity we want to estimate is therefore bounded by a constant

multiple of 1
M

+ κ + α
κ
+ αMs+2

κs+1 . Setting κ = α
1

2(s+1) , we see that this
quantity can be made smaller than δ by first fixing M small enough in
terms of δ and then α small enough in terms of δ and M . �

8.2. Intermediate contribution lemma.

Proposition 8.3. If x0 ∈ B(x, r), and αµ(B(x, βr)) < α for every
β ∈ [1,M3], then for any δ > 0, we can choose α small enough in
terms of M and δ such that

∣∣∣
∫

B(x0,Qr)

T ([η 1
M
,Mr,y − η 1

Q′ ,Q
′r,y]µ)(y)dµ(y)

∣∣∣≤ Cδ µ(B(x0, Qr))

for any M > Q′ ≥ Q and Q ∈ [4,M/2].

Proof. Again without loss of generality we assume that r = 1. The
hypotheses of Corollary 7.4 are satisfied, and so we have that either

(1) µ(B(x0,M
2)) .MC0

√
α, or

(2) µ(B(x0,M
2)) .MC0µ(B(x0, Q)), for some constant C0.

If (1) occurs we can appeal to the size estimate (1) from Definition
1.1, obtaining
∣∣∣
∫

B(x0,Q)

T ([η 1
M
,M,y − η 1

Q′ ,Q
′,y]µ)(y)dµ(y)

∣∣∣

=
∣∣∣
∫

B(x0,Q)

∫

Rd

K(y − z)[η 1
M
,M,y(z)− η 1

Q′ ,Q
′,y(z)] dµ(z) dµ(y)

∣∣∣

≤
∫

B(x0,Q)

∫

B(y,2M)\B(y,Q′)

∣∣∣K(y − z)
∣∣∣ dµ(z) dµ(y)

. µ(B(x0, Q))
µ(B(x0,M

2))

(Q′)s
. µ(B(x0, Q))M

C0
√
α

< δµ(B(x0, Q))

provided α is sufficiently small in terms of M and δ.
Suppose now that we are in the scenario (2). We wish to estimate

(8.1)
∣∣∣
∫

B(x0,Q)

T ([η 1
M
,M,y − η 1

Q′ ,Q
′,y]µ)(y)dµ(y)

∣∣∣.



20 B. JAYE AND T. MERCHÁN

Instead we will consider
∣∣∣
∫

Rd

T ([η 1
M
,M,y − η 1

Q′ ,Q
′,y]µ)(y)η

√
α,Q,x0(y) dµ(y)

∣∣∣,(8.2)

because the difference between (8.1) and (8.2) can be bounded using
the size estimate (1) from Definition 1.1 by
∫

Rd

(
η√α,Q,x0(y)− χB(x0,Q)(y)

)
|T ([η 1

M
,M,y − η 1

Q′ ,Q
′,y]µ)(y)| dµ(y)

.
µ(B(x0,M

2))

(Q′)s

∫

Rd

(
η√α,Q,x0(y)− χB(x0,Q)(y)

)
dµ(y)

Lemma 7.1
.

µ(B(x0,M
2))

(Q′)s
√
αQs .

√
αMC0µ(B(x0, Q) <

δ

3
µ(B(x0, Q)),

as long as α is small enough in terms of M and δ.
To estimate (8.2) we introduce ν ∈ Ss such that αµ,ν(B(x,M2/8)) ≤

α. Our goal will be to replace ν by µ in every instance in (8.2), since
the resulting integral is zero due to the fact that ν is symmetric (as we
shall show below).
We first replace µ by ν in the operator appearing in (8.2), so we need

to estimate
∣∣∣
∫

Rd

η√α,Q,x0(y)T ([η 1
M
,M,y − η 1

Q′ ,Q
′,y](µ− cµ,νν))(y) dµ(y)

∣∣∣,(8.3)

where cµ,ν = Iµ(B(x,M2/8))
Iν(B(x,M2/8))

. (The factor of 1/8 here is merely because

then Iµ(B(x,M2/8)) ≤ µ(B(x,M2/2)) ≤ µ(B(x0,M
2)).)

To estimate (8.3), we observe from Lemma 6.3 that, for any y ∈
B(x0, 2Q) (which contains supp η√α,Q,x0) the function

z → K(y − z)(η1/M,M,y(z)− η1/Q′,Q′y(z))

has Lipschitz norm at most C (recall Q′ ≥ 1). Consequently,

sup
y∈supp(η√α,Q,x0

)

∣∣∣T ([η 1
M
,M,y − η 1

Q′ ,Q
′,y](µ− cµ,νν))(z)

∣∣∣

. M2(s+1)αµ(B(x,M2/8)) .M2(s+1)α.

(8.4)

Therefore we can bound (8.3) by a constant multiple of

M2(s+1)αµ(B(x0, 2Q)) .MC0+2(s+1)αµ(B(x0, Q)) <
δ

3
µ(B(x0, Q)),

provided α is sufficiently small in terms of M and δ.
Our next step is to estimate

(8.5)
∣∣∣
∫

Rd

η√α,Q,x0(y)T ([η 1
M
,M,y − η 1

Q′ ,Q
′,y](cµ,νν))(y) d(µ− cµ,νν)(y)

∣∣∣.
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We next claim that, on B(x0, 2Q), the function

y → T ([η 1
M
,M,y − η 1

Q′ ,Q
′,y] ν)(y),

is ν(B(x0, 3M))-Lipschitz, and also bounded by ν(B(x0, 3M)).
For y ∈ B(x0, Q), the function is an integral (with respect to ν) over

z ∈ B(x0, 3M) of Fz(y) = K(y − z)[η 1
M
,M,y(z) − η 1

Q′ ,Q
′,y(z)]. But for

every z ∈ Rd, Lemma 6.3 ensures that Fz has Lipschitz norm and L∞

norm at most some constant C > 0, so the claim follows.
Consequently, recalling the definition of cµ.ν we use the fact that

αµ,ν(B(x,M2/8)) ≤ α to estimate (8.5) by

C
Iµ(B(x0,M

2/8))

Iν(B(x0,M2/8))

ν(B(x0, 3M))√
α

M2(s+1)α .MC0+2(s+1)
√
αµ(B(x0, Q))

<
δ

3
µ(B(x0, Q)),

provided α is small enough in terms of δ and M .
Our last claim is that∫

Rd

η√α,Q,x0(y)

∫

Rd

K(y − z)[η 1
M
,M,y(z)− η 1

Q′ ,Q
′,y(z)] dν(z) dν(y) = 0.

In order to see this, we focus once more in the inner integral. For
y ∈ B(x0, 2Q) ∩ supp(ν), the fact that ν is symmetric, we get that
from Remark 6.1,
∫

Rd

K(y − z)[η 1
M
,M,y(z)− η 1

Q′ ,Q
′,y(z)] dν(z) = 0 for every y ∈ supp(ν).

Combining these estimates the proposition follows. �

8.3. Unit scale averaging lemma.

Proposition 8.4. Assume that x0 ∈ B(x, r), αµ(B(x, βr)) < α for
every β ∈ [1,M2] and let γ ∈ (0, 1).
Provided that γM ≫ 1, then for any δ > 0,

• we can choose ε sufficiently small depending on δ, and
• α sufficiently small depending on ε and M

such that, if αµ,ν(B(x, γMr)) ≤ α for ν ∈ Ss satisfying either

(1) ν is reflection symmetric in B(x0, 32r), or
(2) µ(B(x, 32r)) ≤ εrs, in which case we set x0 = x,

then

(8.6)
∣∣∣
∫ 8

4

∫

B(x0,Qr)

T (η 1
16
,16r,yχB(x0,Qr)cµ)dµ(y)dQ

∣∣∣< δµ(B(x0, 2
10r)).
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Proof. We again assume x0 = 0 and r = 1 (Remark 6.2). Rewrite the
integral appearing in (8.6) as
∫ 8

4

∫

B(0,Q)

T (η 1
16
,16,y χB(0,Q)cµ)dµ(y)dQ

=

∫ 8

4

∫

B(0,Q)

∫

B(0,Q)c
K(y − z)η 1

16
,16,y(z) dµ(z) dµ(y) dQ

=

∫

Rd

η1,8,0(y)

∫

Rd

η 1
16
,16,y(z)K(y − z)

∫ 8

4

χ{
|y|<Q,
|z|>Q

}(Q) dQdµ(z) dµ(y).

Denote by L(y, z) the function
∫ 8

4

χ{
|y|<Q,
|z|>Q

}(Q) dQ = [{min(8, |z|)− 4}+ − {max(4, |y|)− 4}+]+ .

Notice that |L(y, z)| . |y − z|, and for any z, L(·, z) is a Lipschitz
function with Lipschitz norm ‖L(·, z)‖Lip . 1. From now on, we denote
H(y, z) = K(y − z)L(y, z) and

Fµ(y) =

∫

Rd

H(y, z)η 1
16
,16,y(z) dµ(z).

Fix κ > 0. Decompose Fµ into its local and its non-local parts,

Fµ(y) = F κ

µ (y) + Fµ,κ(y),

where

Fµ,κ(y) =

∫

Rd

H(y, z)(η 1
16
,16,y(z)− η 1

16
,κ,y(z)) dµ(z),

and

F κ

µ (y) =

∫

Rd

H(y, z)η 1
16
,κ,y(z) dµ(z).

Appealing to the size estimates of K and L, we have |H(y, z)| .
1

|y−z|s−1 . Therefore

|F κ

µ (y)| ≤
∫

|y−z|≤2κ

1

|y − z|s−1
dµ(z) . κ,

and
∣∣∣
∫

Rd

Fµ(y)η1,8,0(y) dµ(y)
∣∣∣≤

∣∣∣
∫

Rd

Fµ,κ(y)η1,8,0(y) dµ(y)
∣∣∣+
δ

3
µ(B(0, 16))

if κ is a chosen to be a small constant multiple of δ.
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Fix ν ∈ Ss with αµ,ν(B(x, γM)) ≤ α as in the statement of the
proposition. In the case (2), we have that for y ∈ B(0, 9), the set
B(y, 20) ⊂ B(0, 32) and as µ(B(0, 32)) ≤ ε we get that

|Fµ,κ(y)| ≤
∫

κ≤|y−z|≤20

1

|y − z|s−1
dµ(z) ≤ κ

1−sε . δ1−sε.

Integrating this bound with respect to the measure η1,8,0(y)dµ(y), we
therefore infer that

∣∣∣
∫

Rd

Fµ(y)η1,8,0(y) dµ(y)
∣∣∣< δµ(B(0, 16)),

as long as ε is sufficiently small in terms of δ.
We now consider the case when ν satisfies (1), i.e. ν is reflection

symmetric in B(0, 32), with 0 ∈ B(x, 1). Our goal will be to replace

(8.7)

∫

Rd

Fµ,κ(y)η1,8,0(y) dµ(y)

with ∫

Rd

Fν,κ(y)η1,8,0(y) dν(y),

and show that the latter integral equals zero. Of course, we may as-
sume that µ(B(x, 32)) ≥ ε. Hence, as long as

√
α ≤ ε, we can apply

Corollary 7.4 in order to get

(8.8) Dµ(B(x,M2)) .MC0Dµ(B(x, 32)).

We next claim that

‖Fµ,κ‖Lip(B(0,9)) .
µ(B(0, 32))

κs+1
.

To see this, we first observe from Lemma 6.3 that, for any z ∈ B(0, 32),
the function y 7→W (y, z) = K(y−z)L(y, z)(η 1

16
,16,y(z)−η 1

16
,κ,y(z)) has

Lipschitz norm at most C
κs+1 . On the other hand, if y ∈ B(0, 9), then

z 7→W (y, z) is supported inB(0, 32). Since Fµ,κ(y) =
∫
Rd W (y, z)dµ(z),

the claim follows by combining these two observations.
We now begin estimating (8.7). Since Cκs+1

γM
Fµ,κ ∈ F0,γM ,

∣∣∣
∫

Rd

Fµ,κ(y)η1,8,0(y) d

(
µ− Iµ(B(x, γM))

Iν(B(x, γM))
ν

)
(y)

∣∣∣ .
(γM)s+1

κs+1
αµ(B(0, 32))

.
Ms+1

κs+1
αµ(B(0, 32)),

and the right hand side is at most δ
3
µ(B(0, 32)) provided that α is

sufficiently small in terms on M and κ.
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We next consider the expression
(8.9)
Iµ(B(x, γM))

Iν(B(x, γM))

∫

Rd

η1,8,0(y)

(
Fµ,κ(y)−

Iµ(B(x, γM))

Iν(B(x, γM))
Fν,κ(y)

)
dν(y).

Write Fµ,κ(y)− Iµ(B(x,γM))

Iν(B(x,γM))
Fν,κ(y) as

∫

Rd

H(y, z)(η 1
16
,16,y(z)− η 1

16
,κ,y(z)) d

(
µ− Iµ(B(x, γM))

Iν(B(x, γM))
ν

)
(z).

Lemmma 6.3 yields that the function

z → H(y, z)(η 1
16
,16,y(z)− η 1

16
,κ,y(z))

is C
κs+1 -Lipschitz, and supported inB(y, 17). So, since αµ,ν(B(x, γM)) <

α yields that

|Fµ,κ(y)−
Iµ(B(x, γM))

Iν(B(x, γM))
Fν,κ(y)| .

Ms+1

κs+1
α.

But now (8.8) ensures that Iµ(B(x,γM))

Iν(B(x,γM))
ν(B(0, 9)) .MC0µ(B(x, 32)), so

we estimate (8.9) by a constant multiple of Ms+1

κs+1 M
C0αµ(B(x, 32)) <

δ
3
µ(B(0, 64)) as long as α is sufficiently small in terms of κ and M .
Finally, the reflection symmetry of ν comes in to play. Notice that

H(y, z) satisfies that H(−y,−z) = −H(y, z) and that

η1,8,0(y)(η 1
16
,16,y(z)−η 1

16
,κ,y(z)) = η1,8,0(−y)(η 1

16
,16,−y(−z)−η 1

16
,κ,−y(−z)).

Combined with the fact that ν is reflection symmetric about 0 in
B(0, 32), this implies that

∫

Rd

∫

Rd

η1,8,0(y)[η 1
16
,κ,y(z)− η 1

16
,16,y(z)]H(y, z) dν(z) dν(y) = 0.

Bringing our estimates together, we conclude that, in case (b) we arrive
at ∣∣∣

∫

Rd

Fµ(y)η1,8,0(y) dµ(y)
∣∣∣≤ δµ(B(0, 210)),

and the lemma is proved. �

9. Gluing it all together: The Proof of Theorem 3.4

In this section we complete the proof of Theorem 3.4. Fix µ ∈ Ms,
and the CZO T associated to a CZ-kernel K which is bounded in L2(µ).
First observe that T is also bounded in L2(µ|E), where µ(E) < ∞.
Consequently, we may (and will) assume that µ is a finite measure.
From Section 5 we recall that it suffices to show that the limit (1.2)

holds with ν = µ. To this end, we recall a (particular case of a) theorem
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due to Mattila and Verdera, which states the existence of the weak
limit for certain CZOs. For completeness, the short proof is presented
in Appendix A.

Theorem 9.1. (Mattila-Verdera) Fix s ∈ (0, d). Let µ ∈ Ms be a
finite measure. If the CZO T associated to K is bounded in L2(µ),

Tr(µ) ∈ L2(µ) converges weakly in L2(µ) to a function T̃ (µ) as r → 0.
Moreover

T̃ (µ)(x) = lim
|Br|→0

x∈ 1
2
Br

1

µ(Br)

∫

Br

T (χBc
r
µ) dµ for µ-a.e. x ∈ R

d,

where Br denotes a ball of radius r.

To prove Theorem 3.4, we shall show that

lim
r→0

Tr(µ)(x) = T̃ (µ)(x)

for every x ∈ Rd for which

• limr→0 αµ(B(x, r)) = 0,

• T̃ (µ)(x) is well defined, and moreover

lim
r→0

sup
Br : x∈1

2
Br

∣∣∣
1

µ(Br)

∫

Br

T (χRd\Br
µ)(y)dµ(y)− T̃ (µ)(x)

∣∣∣= 0,

Fix δ ∈ (0, 1). Introduce ε≪ δ, M ≫ 1
δ
an even integer and α≪ δ,

with M sufficiently large in terms of δ, ε sufficiently small in terms of
δ, and α sufficiently small in terms of ε,M and δ, so that Corollary 8.2,
Proposition 8.3, and Proposition 8.4 can be applied with this choice of
δ.
Fix t0 > 0 such that

(9.1)
∣∣∣

1

µ(Br)

∫

Br

T (χBc
r
µ)(y)dµ(y)− T̃ (µ)(x)

∣∣∣≤ δ

whenever r < M3t0 and x ∈ 1
2
Br, and also

αµ(B(x, r)) < α whenever r ≤M3t0.

For r < t0, we want to compare Tr(µ)(x) to a collection of averages of
the form 1

µ(Br′ )

∫
Br′

T (χBc
r
µ)(y)dµ(y) with x ∈ 1

2
Br′ and r

′ comparable

to r. The averaging process here is with a view to applying Proposition
8.4. To formally carry this out requires an initial reduction to doubling
scales.
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9.1. Reduction to Doubling scales. We consider two cases.

Case 1. Suppose first that Dµ(B(x, r)) < ε. Fix A = 230Θ. Suppose
that, for ℓ = 0, . . . , L− 1 we have

(9.2) Dµ(B(x,
r

Aℓ
)) > ADµ(B(x,

r

Aℓ+1
)).

Then for ℓ = 0, . . . , L,

(9.3) µ(B(x,A−ℓr)) ≤ A−ℓ(s+1)µ(B(x, r)) ≤ A−ℓ(s+1)εrs,

and consequently, by the David-Mattila Lemma (Lemma 6.6),

(9.4)

∫

B(x,r)\B(x,A−L+1r)

|K(x, r)|dµ(y) . ε.

If it happens that (9.3) holds for every ℓ ∈ N, then we have that the
integral

∫
R
K(x − y)dµ(y) converges absolutely, and so certainly the

principal value exists at this x. Hence we may assume that there exists
L ∈ N such that (9.2) holds for all ℓ < L and fails for ℓ = L. Set
r0 = r/AL+1. Then we say that r0 is a doubling scale,

(9.5) Dµ(B(x,Ar0)) ≤ ADµ(B(x, r0)),

and (9.4) holds.
Case 2. If Dµ(B(x, r)) > ε, then set r0 = r. Since α ≪ ε, and cer-

tainly αµ(B(x, t)) < α for all t ∈ [r0, Ar0], applying Lemma 7.3 C logA
times ensures that (9.5) holds.

Notice that in either case, r0 ≤ r, and from (9.4)

(9.6) |Tr(µ)(x)− Tr0(µ)(x)| . ε . δ.

With a doubling scale found, we now choose the averaging scales.

9.2. Choosing the averaging scales. Fix R > 0. Choose ν ∈ Ss

with αµ,ν(B(x,Mr0)) < α. Provided α is sufficiently small in terms of
ε and M , then Alternative 7.5 tells us that either

(1) there exists x̃ ∈ B(x, r0) with ν reflection symmetric inB(x̃, 32r0),
and we set R = 1, or there exists x̃ ∈ B(x, (32Θ + 1)r0) such
that ν is reflection symmetric in B(x̃, 64(32Θ)r0), in which case
we determine R = 26Θ = 2 · 32Θ ≥ 32Θ + 1.

(2) µ(B(x, 250Θr0)) . εrs0, in which case we set x̃ = x and R = 1.

Notice that, in either case x̃ ∈ B(x,Rr0) (we say this with a view
to applying Corollary 8.2, Proposition 8.3, and Proposition 8.4, with
x0 = x̃ and r = Rr0).
With this notation, we shall prove the following proposition:
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Claim 9.2. One has
∣∣∣Tr0(µ)(x)−

1

σ

∫ 8

4

∫

B(x̃,QRr0)

T (χB(x̃,QRr0)c µ)(y)dµ(y)dQ
∣∣∣. δ,

where σ =
∫ 8

4
µ(B(x̃, QRr0)) dQ.

Proof. FixM ′ ∈ [M+210, 211M ] according to Lemma 6.4 with r = Rr0,
so µ(B(x, (M ′ + 210)Rr0)\B(x, (M ′ − 210)Rr0)) ≤ 2

M
µ(B(x, 211Mr0)).

We estimate the difference appearing on the left hand side of Claim 9.2
by

∣∣∣Tr0(µ)(x)−
1

σ

∫ 8

4

∫

B(x̃,QRr0)

T ([1− η 1
M′ ,M

′r0,y
]µ)(y)dµ(y) dQ

∣∣∣

+
∣∣∣
1

σ

∫ 8

4

∫

B(x̃,QRr0)

T ([η 1
M′ ,M

′r0,y
− η 1

16
,16Rr0,y

]µ)(y) dµ(y) dQ
∣∣∣

+
∣∣∣
1

σ

∫ 8

4

∫

B(x̃,QRr0)

T ([η 1
16
,16Rr0,y

χB(x̃,QRr0)c ]µ)(y) dµ(y) dQ
∣∣∣

= I + II + III.

Appealing Corollary 8.2, with x0 = x̃ to the scale r = Rr0 with t = r
R

(which is much greater than Rr0
M

), we obtain for any Q ∈ [4, 8],

∣∣∣µ(B(x̃, QRr0))Tr0(µ)(x)−
∫

B(x̃,QRr0)

T ([1− η 1
M′ ,M

′r0,y
]µ)(y)dµ(y)

∣∣∣

≤δ µ(B(x̃, QRr0)),

and hence, by integrating both sides of this inequality over Q ∈ [4, 8],
we see that I ≤ δ.
To bound II, we appeal to Proposition 8.3 with x0 = x̃, M replaced

by M ′ and r = Rr0. This yields
∣∣∣
∫

B(x̃,QRr0)

T ([η 1
M′ ,M

′r0,y
− η 1

16
,16Rr0,y

]µ)dµ(y)
∣∣∣≤ δ µ(B(x̃, QRr0)),

and integrating this inequality over Q ∈ [4, 8] we get that II ≤ δ.
Lastly, we turn to III, for which we intend to apply Proposition

8.4. With x0 = x̃ and r = Rr0, either alternative (1) or (2) is satisfied
in the hypothesis of Proposition 8.4 with the measure ν. Moreover
αµ,ν(B(x, γRr0)) < α with γ = 1

R
(which depends on Θ), so γM ≫ 1.

Consequently, we may apply Proposition 8.4 to get that

∣∣∣
∫ 8

4

∫

B(x0,QRr0)

T (η 1
16
,16Rr0,y

χB(x̃,QRr0)cµ)dµ(y)dQ
∣∣∣< δµ(B(x̃, 210Rr0)).
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But now B(x̃, 210Rr0) ⊂ B(x,Ar0), and B(x, r0) ⊂ B(x̃, 4Rr0), so the
doubling property, and monotonicity of the measure, yields

µ(B(x̃, 210Rr0)) . µ(B(x, r0)) .

∫ 8

4

µ(B(x,QRr0))dQ = σ.

Combining these observations yields III . δ, and so the claim is
proved. �

To finish the proof Theorem 3.4, notice that x ∈ 1
2
B(x̃, QRr0) for

every Q ∈ [4, 8], and so (9.1) ensures that
∣∣∣T̃ (µ)(x)− 1

σ

∫ 8

4

∫

B(x̃,QRr0)

T (χB(x̃,QRr0)cµ)(y)dµ(y)dQ
∣∣∣. δ.

Therefore from Claim 9.2 we get that

|T̃ (µ)(x)− Tr0(µ)(x)| . δ.

So applying (9.6),

|T̃ (µ)(x)− Tr(µ)(x)| . δ.

Therefore, limr→0 Tr(µ)(x) = T̃ (µ)(x), and Theorem 3.4 is proved.

Appendix A.
The Mattila-Verdera Weak Limit

For the reader’s convenience, in this section we provide the proof of
Theorem 9.1. In order to do so, we recall the following version of the
Lebesgue Differentiation Theorem:

Theorem A.1. Let µ be a locally finite Borel measure and let f be a
locally integrable function. Then

f(x) = lim
|Br|→0

x∈ 1
2
Br

1

µ(Br)

∫

Br

f dµ for µ-a.e. x ∈ R
d.

This theorem follows in a standard manner from the weak (1,1) in-
equality for the Maximal funtion

M(f)(x) = sup
B a ball, x∈1

2
B

1

µ(B)

∫

B

f dµ.

Again appealing to standard theory, the weak-type inequality follows
(for instance) from the validity of the following variant of the Besicov-
itch covering lemma:

Lemma A.2. Suppose that {Bj}j is a finite collection of balls, then
there is a sub-collection {Bjk}k such that
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• there is a dimensional constant M = M(d) > 0, such that for
any x ∈ Rd, card{k : x ∈ Bjk} ≤M , and

•
⋃
k Bjk ⊃

⋃
j
1
2
Bj.

The verification of this lemma is an exercise in the proof of Besicov-
itch covering theorem, and is left to the reader (see also [deGuz, p.6-7]
for more general statements).

Now we proceed with the proof of Theorem 9.1, which is a special
case of the analysis in [MV].

Proof of Theorem 9.1. We need to show that Tr(µ) has a weak limit in
L2(µ) as r → 0. Due to the antisymmetry of K, for every r > 0 and
any open ball B we have

∫

B

Tr(χBµ) dµ = 0.

Consequently, ∫

B

Tr(µ) dµ =

∫

B

Tr(χRd\Bµ) dµ.

Notice that T (χRd\Bµ)(x) is well-defined for x ∈ B. Also, since B is
open, T (χRd\Bµ)(x) = limr→0 Tr(χRd\Bµ)(x), for x ∈ B. Moreover,

|Tr(χRd\Bµ)(x)| ≤ sup
r>0

|Tr(χRd\Bµ)(x)|
def
= T∗(χRd\Bµ)(x).

It is well known that (within the class of convolution kernels we consider
in Definition 1.1) L2(µ) boundedness of T implies that T∗(µ) ∈ L1(µ)
(see [NTV3] and [To6]). Consequently, from the dominated conver-
gence theorem we deduce that

(A.1) lim
r→0

∫

B

Tr(µ) dµ =

∫

B

T (χRd\Bµ)dµ.

In order to prove the weak convergence in L2(µ) of Tr(µ) as r → 0, we
shall prove the existence of

lim
r→0

∫

Rd

Tr(µ)g dµ, for every g ∈ L2.

We know this limit exists if g is the characteristic function of an open
ball, and therefore the limit exists for linear combinations of character-
istic functions of open balls, a collection of functions which we denote
by S. By appealing to (for instance) the Vitali covering lemma, one
can see that S is dense in L2(µ).
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Fix an arbitrary function g ∈ L2(µ). For δ > 0, let b ∈ S satisfy
‖g − b‖L2(µ) < δ. Then, for r1, r2 > 0,

∫

Rd

(Tr1(µ)− Tr2(µ))g dµ =

∫

Rd

(Tr1(µ)− Tr2(µ))b dµ

+

∫

Rd

(Tr1(µ)− Tr2(µ))(g − b) dµ.

The second term is bounded by 2‖T∗(µ)‖L2(µ)‖g−b‖L2(µ) ≤ 2δ‖T∗(µ)‖L2(µ).
Consequently,

lim sup
r1,r2→0

∣∣∣∣
∫

Rd

(Tr1(µ)− Tr2(µ))g dµ

∣∣∣∣ ≤ 2δ‖T∗(µ)‖L2(µ).

As δ > 0 is arbitrary, we have that Tr(µ) converges weakly in L2(µ) as

r → 0 to a function T̃ (µ).
Now, by Theorem A.1, for µ-almost every x ∈ Rd we have that

T̃ (µ)(x) = lim
|Br|→0

x∈ 1
2
Br

1

µ(Br)

∫

Br

T̃ (µ) dµ

weak convergence
= lim

|Br |→0

x∈ 1
2
Br

lim
t→0

1

µ(Br)

∫

Br

Tt(µ) dµ

(A.1)
= lim

|Br|→0

x∈ 1
2
Br

1

µ(Br)

∫

Br

T (χRd\Br
µ) dµ

and the theorem is proved. �
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